If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-2k-224=0
a = 1; b = -2; c = -224;
Δ = b2-4ac
Δ = -22-4·1·(-224)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-30}{2*1}=\frac{-28}{2} =-14 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+30}{2*1}=\frac{32}{2} =16 $
| 4(h+6)=56 | | 4x-6+3x-5=43 | | x+.92=5.03 | | -2-3=-7x+12 | | ((4/5)x)+92=x | | (y/2)-(y-1/3)=2 | | x^2+3/5(x)-2=0 | | (4/5)x+92=x | | 0.5(2d-5)=8 | | 1=v/2-3 | | x^2+(3/5)x-2=0 | | 2n-5=14+13n | | (13t+8)(5t-15)=0 | | 154+(2+8x)=180 | | x^2+3/5x-2=0 | | –14x−5x−–14x+–13x=18 | | 3x-4+7x=-34 | | 4x+8-8x=17-14x+10x-9 | | -17+6g=19 | | -3x-8-7x+9=51 | | 3x=10=2x=180 | | 8n-2=7n-5 | | (2x-4)(9x+9)=0 | | -10x+x/6=-8 | | -10x+40=40-10x | | 7p-1=-1+7p | | 98w=7 | | 0.1^1.6x-6000=60871 | | 15x-36=3x | | X-5/4-x/3=2 | | (7/2)x-1=2x+9 | | -4s+10=-2s-10 |